Corrigendum for Vector Equilibrium Problems. Existence Theorems and Convexity of Solution Set

JUN-YI FU

Department of Mathematics, Nanchang University, Nanchang 330047, China (e-mail: fujunyihotmail@tom.com)

In the proof of $E \subset \bigcap_{f \in C^{\sharp}} T(f)$ of Theorem 3 of [1], there is a gap. Theorem 3 of [1] should reads as follows.

THEOREM 3. Let X, Y, D and C be as in Theorem 1, and let $C^{\sharp} \neq \emptyset$. Let $G, \quad H: D \times D \longrightarrow 2^{Y}$ be set-valued mappings satisfying the conditions (i)(vi) in Theorem 1. In addition, assume that G, H satisfy the following condition:
(vii) for any fixed $y \in D, G(., y)+H(., y): D \longrightarrow 2^{Y}$ is proper quasi-C-concave, i.e., for any $x_{1}, x_{2} \in D, t \in[0,1], x=t x_{1}+(1-t) x_{2}$, and for any $w \in G(x, y)+H(x, y)$, there exists $w_{1} \in G\left(x_{1}, y\right)+H\left(x_{1}, y\right)$ or $w_{2} \in G\left(x_{2}, y\right)+$ $H\left(x_{2}, y\right)$ such that $w \in w_{1}+C$ or $w \in w_{2}+C$.

Then the solution set of (VEP 1)

$$
E=\{\bar{x} \in K: G(\bar{x}, y)+H(\bar{x}, y) \subset Y \backslash(-\operatorname{int} C), \quad \forall y \in D\}
$$

is convex. If C satisfies the condition (Δ), then the solution set of (VEP 3)

$$
E_{*}=\{\bar{x} \in K: G(\bar{x}, y)+H(\bar{x}, y) \subset Y \backslash(-C \backslash\{0\}), \quad \forall y \in D\}
$$

is convex.
Proof. We only show the case of (VEP 1). The other one can be proven similarly. By Theorem $1, E \neq \emptyset$. Since C is a closed, convex pointed cone with int $C \neq \emptyset$, we have

$$
\begin{equation*}
Y \backslash(-\operatorname{int} C)+C=Y \backslash(-\operatorname{int} C), \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
Y \backslash(-C \backslash\{0\})+C=Y \backslash(-C \backslash\{0\}) \tag{2}
\end{equation*}
$$

Let $x_{1}, x_{2} \in E, t \in[0,1]$ and $x=t x_{1}+(1-t) x_{2}$. We show that $x \in E$. It follows from $x_{i} \in E,(i=1,2)$ that

$$
\begin{equation*}
G\left(x_{i}, y\right)+H\left(x_{i}, y\right) \subset Y \backslash(-\operatorname{int} C), \quad \forall y \in D, \quad i=1,2 . \tag{3}
\end{equation*}
$$

For any $w \in G(x, y)+H(x, y)$, by the condition (vii), we have $w_{1} \in$ $G\left(x_{1}, y\right)+H\left(x_{1}, y\right)$ or $w_{2} \in G\left(x_{2}, y\right)+H\left(x_{2}, y\right)$ such that

$$
\begin{equation*}
w \in w_{1}+C \quad \text { or } \quad w \in w_{2}+C . \tag{4}
\end{equation*}
$$

By (1),(3) and (4), we have $w \in Y \backslash(-\operatorname{int} C)$. Since w is arbitrary, we get $x \in E$.

Theorem 4 of [1] should reads as follows.
THEOREM 4. Let X, Y, D and C be the same as in Theorem 3. Let G, $H: D \times D \longrightarrow 2^{Y}$ satisfy all the conditions in Theorem 2. In addition, assume that the following condition holds:
(vi) for any fixed $y \in D, \quad G(., y)+H(., y): D \longrightarrow 2^{Y}$ is proper quasi-C-concave. Then the solution set of (VEP 1)

$$
E=\{\bar{x} \in B: G(\bar{x}, y)+H(\bar{x}, y) \subset Y \backslash(-\operatorname{int} C), \quad \forall y \in D\}
$$

is convex. If C satisfies condition (Δ), then the solution set of (VEP 3)

$$
E_{*}=\{x \bar{\in} B: G(\bar{x}, y)+H(\bar{x}, y) \subset Y \backslash(-C \backslash\{0\}), \quad \forall y \in D\}
$$

is convex.

Reference

1. Fu, J.Y. (2005), Vector equilibrium problems. Existence theorem and convexity of solution set, Journal of Global Optimization 31, 109-119.
